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Abstract
A unique challenge in air pollution cohort studies and similar applications in environmental
epidemiology is that exposure is not measured directly at subjects’ locations. Instead, pollution
data from monitoring stations at some distance from the study subjects are used to predict
exposures, and these predicted exposures are used to estimate the health effect parameter of
interest. It is usually assumed that minimizing the error in predicting the true exposure will
improve health effect estimation. We show in a simulation study that this is not always the case.
We interpret our results in light of recently developed statistical theory for measurement error, and
we discuss implications for the design and analysis of epidemiologic research.

There has been a major effort in air pollution epidemiology research to develop statistical
models to predict exposures at subjects’ locations in situations where measurements at the
desired locations are not available.1–7 These efforts assume that exposure predictions with
less measurement error relative to the unknown true values will improve health effect
estimation.8–10 We demonstrate in a simulation study that this assumption is not always true,
and we interpret our results using recently developed statistical theory for measurement
error resulting from spatially misaligned data.11

Mathematical framework and simulation study
Most modern statistical models for predicting long-term average air pollution concentrations
are based on land-use regression. In land-use regression modeling, a linear regression model
with geographic (land-use) covariates such as population density, proximity to traffic, and
proximity to commercial areas is fit to monitoring data and then used to predict
concentrations at subjects’ locations. Elaborations on this framework account for spatial and
spatio-temporal correlation and various approaches to model selection, but land-use
regression remains a central component. We focus on a pure land-use regression model in
this paper.

Stochastic data-generating model
Consider an association study with the N × 1 vector of observed health outcomes Y, N × 1
vector of exposures X, and N × m matrix of covariates Z. Assume a linear regression model
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(1)

with coefficient of interest βX and ε an N × 1 random vector with independent elements
distributed as Gaussian random variables with mean 0 and variance  (i.e., N(0, ).

We are interested in the situation where Y and Z are observed, but instead of X we observe
the N* × 1 vector X* of exposures at various locations. N* is the number of exposure
monitors. Assume that X, the subjects’ exposures, and X*, the exposure concentrations
measured at the monitors, are jointly distributed as

(2)

In this expression, S and S* are random N × k and N* × k dimensional matrices of the k
geographic covariates used in the land-use regression model observed without error, α is an
unknown k × 1 vector of coefficients, and η and η* are independent vectors with elements

distributed as N(0, ). The stochasticity in S and S* derives from random selection of
subject and monitor locations. If the exposure model is known, it is standard practice to
estimate α based on X* and then use W = Sα̂ in place of X in equation (1) to estimate βX.
That is, predictions from the land-use regression model are used as estimated exposures in
place of the unknown true values, a form of regression calibrat ion.12

We quantify the accuracy in approximating X by W by

where larger  values correspond to less measurement error. This defines an out-of-sample
measure of prediction accuracy, as it is based on prediction error at subjects’ locations, and

it is not subject to bias from overfitting the exposure model to the monitoring data.13  is a
random quantity that varies for each realization of the data-generating model, and we denote

its expectation .

There are a number of criteria for evaluating the validity and reliability of health effect
estimates. We consider bias, standard deviation, root mean squared error, and coverage
probability (the proportion of 95% confidence intervals that include the true βX).14

Misspecified exposure model
We generally do not know the exact form of the exposure model and may use a misspecified
model for prediction. One form of model misspecification is to omit a geographic covariate
from the land-use regression model. This corresponds to observing only the N × (k − 1) and
N* × (k − 1) matrices S′ and S*′ obtained by deleting the k th columns of S and S*. We then
estimate the corresponding (k − 1) × 1 vector of coefficients α′ and replace X in equation (1)

by W′ = S′ α̂ ′ to obtain . We denote measures of exposure prediction accuracy  and 
as in the case of the correctly specified exposure model.
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We generally expect  to be larger than , which from the perspective of exposure
modeling implies that the correctly specified exposure model gives better predictions than
the misspecified one. It is reasonable to expect that this will also lead to improved health
effect estimation. However, in the next subsection we will demonstrate a class of examples

in which  is consistently larger than , but β̂X has more error than  as measured in
terms of bias, variance, root mean squared error, and coverage probability. We emphasize
that is not inflated by overfitting because it is based on the correctly specified exposure
model and quantifies out-of-sample prediction accuracy at subjects’ locations.

Simulation study
We set k = 4 (three geographic covariates and an intercept) and consider scenarios with N
between 100 and 10,000 subjects and N* equal to 100 monitors. We assume the three
geographic covariates are independent of each other at all locations and are independent
between subjects. In particular, for each subject i we assume the j th geographic covariate Sij
is independently distributed as N(0,1).

Similarly we assume the  are distributed as N(0,1) for j = 1,2, but the third geographic
covariate for the monitoring sites is distributed as N(0,σ2) for σ2 = 0.1,1.0, or 4.0. Finally,
we set α0 = 0, αj = 4 for j = 1,2,3, β0 = 1, βX = 2, σε = 25, and ση = 4, and we assume there
are no additional covariates Z. Example simulation code in R15 can be found in the
eAppendix (http://links.lwww.com).

The choice of σ2 controls the level of variability in the third geographic covariate at the
monitoring locations. By comparing the misspecified model (i.e., the model that does not
contain the third geographic covariate) to the correctly specified full model, we are able to
assess the added value of including the third geographic covariate in predictions, depending
on its variability. The situation with σ2 = 0.1 is of particular interest, as it represents a
geographic covariate that has limited variability in the monitoring data compared with the
other geographic covariates but is equally variable in the subject data where it will be used
to predict exposures. This is realistic, for example, if the covariate measures near-road
traffic exposure. Regulatory monitors are often sited away from roadways in order to
measure background pollution levels, and so they may not span the full range of covariate
values relevant for predicting exposures at subjects’ home locations – a significant fraction
of which are near major roads.

In the Table and Figure 1, we show the results from 80,000 Monte Carlo simulations with N
= 10,000 subjects, N* = 100 monitoring sites, and σ2 = 1.0. The coefficient for the third
geographic covariate α3 is estimated well in the full model and is statistically significant in

all simulations. The corresponding exposure prediction accuracy  is consistently near

0.75, compared with  near 0.50 with the misspecified model. Health effect estimation
efficiency is improved by using the correctly specified exposure model, which gives a

standard deviation for β̂X of 0.12 compared with 0.21 for  with the misspecified model.
The coverage probabilities for both models are poor, as the standard error estimates fail to
account for exposure measurement error. The correctly specified exposure model results in a
modest improvement in coverage probability, although it also introduces slightly more bias
than the misspecified model.

Analogous results are shown in the Table and Figure 2 for σ2 = 0.1, representing a situation
where one of the geographic covariates is less variable in the distribution of monitoring
locations than are the other geographic covariates. The smaller value of σ2 results in more
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variability in estimating α3, but this parameter is still estimated well and is statistically
significant in 83% of Monte Carlo simulations. There is clear improvement in the exposure

predictions from using the full model with  at least 0.67 in 95% of simulations, as

compared with the misspecified model with  consistently near 0.50. But in this situation,
the health effect estimates are more precise when we use the misspecified exposure model,

with the standard deviation of  equal to 0.16, compared to 0.23 for β̂X using the fully
specified model. The misspecified model also results in less bias and a modest improvement
in coverage probability.

We vary the number of subjects as well as σ2and summarize the results in Figure 3 by

plotting the difference between the standard deviation of , based on the misspecified
exposure model, and β̂X, based on the correct exposure model, on the vertical axis against N
on the horizontal axis; a positive difference indicates that the correctly specified model is
more efficient. We restrict to 5,000 Monte Carlo simulations because this is sufficient to
estimate the standard deviations (the biases are smaller and require more Monte Carlo
simulations). The difference is positive for σ2 = 1.0 and 4.0, consistent with the prior
expectation that more accurate exposure predictions result in more efficient health effect
estimation. But it is negative for σ2 = 0.1 except for the case where there are only N = 100
subjects, demonstrating that in larger health studies the misspecified exposure model results
in more efficient health effect estimation, even though it gives less accurate exposure
predictions. For all simulations, the average out-of-sample exposure model prediction

accuracies are  between 0.73 and 0.75 for the correctly specified model and  between
0.73 and 0.75 for the misspecified model that omits the third geographic covariate.

Theoretical interpretation in a measurement error framework
The results of our simulation study seem paradoxical in that more accurate exposure
predictions do not necessarily lead to improved health effect estimation. The Table shows
that for σ2 = 0.1 the correctly specified model consistently gives more variable exposure
predictions and more accurate out-of-sample prediction, compared with the misspecified
exposure model. However, a small part of the additional exposure variability is induced by
error in estimating α3, which leads to less efficient estimation of βX. These findings can be
understood in a theoretical context by referring to the statistical measurement error
framework developed for this setting.11, 12

Briefly, for a fairly general class of exposure models there are two components to the
measurement error. The Berkson-like component of error results from smoothing the
exposure surface using a model that may not account for all sources of variation and can be
thought of as the part of the true exposure that is not predictable from the model. It is similar
to standard Berkson error16 in that it inflates the standard deviation of the health effect
estimate and introduces little or no bias. However, it is different from Berkson error in that it
is correlated in space and is not completely independent of the predicted exposures.11,12 The
classical-like component comes from uncertainty in estimating the exposure model
parameters. It is similar to classical measurement error in that it is a source of variability in
the predicted exposures and can introduce bias in health effect estimates as well as change
their standard errors. The classical-like component is also different from classical
measurement error in that the additional variability from exposure model parameter
estimation is shared across all prediction locations rather than being independent.11

For the simple land-use regression exposure model considered here, the Berkson-like
component is pure Berkson error because there is no spatial dependence structure in η and
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η* and the Sij and  are independent. When we use the correctly specified exposure model,
the Berkson error is just η, but misspecifying the model by omitting the third geographic
covariate increases the Berkson error substantially, resulting in a degradation of prediction
accuracy. However, Berkson error plays the same role mathematically as the random ε in the
disease model, and so its impact on the health effect estimation error diminishes for large N.
On the other hand, each coefficient that needs to be estimated in the exposure model
contributes to the classical-like error, and this part of the error remains important regardless
of the number of subjects. In some situations, this could result in a bias-variance tradeoff
because classical-like error induces bias while Berkson-like error does not.

It turns out that for σ2 = 0.1 in the monitoring data, we get relatively variable estimates of α3
when using the full exposure model, while still improving out-of-sample prediction accuracy
at subjects’ locations. This results in substantial classical-like measurement error that (for
sufficiently large N) is more important than the additional Berkson error that is introduced
by omitting the corresponding geographic covariate. There is very little bias in any of our
simulations, and so the dominant classical-like error primarily results in more variable
estimates of βX.

Implications for future research
We have shown a class of examples in which more accurate exposure prediction does not
lead to improved health effect estimation. It bears emphasis that this does not result from
overfitting the exposure model, at least not as overfitting is traditionally understood for
prediction models.13 In all cases, using the correctly specified model that includes all three
geographic covariates leads to improved prediction accuracy, as measured by out-of-sample

 evaluated at subjects’ locations.α̂3

Our findings have important implications for the design and analysis of environmental
epidemiologic studies. Development of models for exposure prediction and health effect
estimation should be considered simultaneously, in contrast with the current practice of first
selecting an exposure model to optimize prediction accuracy and then using the resulting
predictions for health effect estimation. Recent papers that address measurement error in air
pollution cohort studies represent progress in this direction.11, 12, 14, 17 Our results do not
necessarily suggest employing a joint statistical estimation model for the exposure and
health parameters in which the health data would influence estimation of the exposure model
parameters. The issue we have highlighted relates more directly to model selection than to
parameter estimation.

There is extensive literature on penalization and other methods for optimizing accuracy of
prediction models,13 but these techniques are not directly applicable because better
prediction accuracy may induce less precise health effect estimation. New statistical
methodology is needed to select exposure models to optimize efficiency of health effects
inference, perhaps involving alternative forms of penalization that account for the structure
in both the monitoring and health outcome data. It is also worth exploring asymptotic
methods to estimate the bias and variance of β̂X in order to select optimal geographic
covariates, particularly when there is a relatively large number of monitoring locations
compared with the geographic covariates.

The relative benefits of various air-pollution exposure models depend on the variability of
geographic covariates in the subject population and monitor locations, and on the size of the
cohort. It is evident that study design can be improved by accounting for statistical issues at
the intersection of exposure prediction and health effect estimation. All else being equal, it is
preferable to design an exposure monitoring campaign to maximize the variability of
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pertinent geographic covariates across monitor locations. An asset allocation-algorithm may
be useful for optimizing the monitoring design to predict exposures in an epidemiology
study with known subjects’ locations.18

We have considered only the relatively simple setting of a linear disease model with an
exposure model that is land-use regression with independent geographic covariates. Even in
this case we have shown that more accurate exposure prediction does not necessarily lead to
improved health effect estimation. We expect that similar phenomena can occur in other
settings, but further research is needed to identify general conditions and assess the
implications of more complex situations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Results from 80,000 Monte Carlo simulations with N = 10,000, N* = 100, and σ2 = 1.0. For
the correctly specified exposure model the average out-of-sample prediction accuracy is

 and the health effect estimation standard deviation is 0.12 with a bias of −0.007
(95% CI = −0.008 to −0.006). Corresponding statistics for the misspecified exposure model

are  and health effect estimation standard deviation 0.21 with a bias of (95% CI = −0.002
to 0.0006). The standard error of α̂3 for the correctly specified model is 0.41, and α̂3 is
statistically significant in all simulations.
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Figure 2.
Results from 80,000 Monte Carlo simulations with N = 10,000, N* = 100, and σ2 = 0.1. For
the correctly specified exposure model the average out-of-sample prediction accuracy is

 and the health effect estimation standard deviation is 0.23 with a bias of −0.035
(95% CI = −0.037 to −0.034). Corresponding statistics for the misspecified exposure model

are  and health effect estimation standard deviation 0.16 with a bias of 0.001 (95% CI =

−0.0003 to 0.002). The density plot for  shows some small outliers for the full model, but
the prediction accuracy is better than for the misspecified model in all but 144 of the 80,000
simulations. The standard deviation of α̂3 for the correctly specified model is 1.37, and α̂3 is
statistically significant in 83% of simulations.
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Figure 3.
Results from 5,000 Monte Carlo simulations with N* = 100, σ2 = 0.1,1.0,4.0, and N ranging
from 100 to 10,000. The vertical axis shows the difference between standard deviation (SD)
of β̂X from the misspecified and correct exposure models. A positive difference indicates
that the correctly specified model is more efficient. For all values of σ2, the average

exposure model prediction accuracies are  between 0.73 and 0.75 and  between 0.49

and 0.50 .
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Table

Results from 80,000 Monte Carlo simulations with N = 10,000 and N* = 100. The  and  are the
out-of-sample prediction  and variance of predicted exposures, respectively, averaged over 80,000 Monte
Carlo simulations. The standard deviation and fraction of Monte Carlo runs statistically significant are given
for estimates of α̂3 in the correctly specified exposure model only, because this parameter is not included in
the misspecified model. The bias, standard deviation, root mean squared error (RMSE), and 95% confidence
interval (CI) coverage are given for estimates of the health effect parameter β̂X. We also report the average
estimated standard error (SE) for β̂X. The Monte Carlo standard error in estimating the bias of β̂X in all models
is less than 0.001. (R code to produce these results is provided in an electronic appendix,
http://links.lww.com.)

σ2 = 1 σ2 = 0.1

Correct
model

Misspecified
model

Correct
model

Misspecified
model

Exposure predictions

 

0.74 0.49 0.73 0.50

 
48.5 32.7 50.2 32.3

Exposure model parameter estimate α̂3

 Standard deviation 0.41 - 1.37 -

 Statistically significant (p < 0.05) 100% - 83% -

Health effect parameter estimate β̂x

 Bias −0.007 −0.001 −0.035 0.001

 Standard deviation 0.12 0.21 0.23 0.16

 RMSE 0.12 0.21 0.23 0.16

 E(SE) 0.038 0.049 0.038 0.049

 95% CI coverage 45% 35% 26% 46%
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